

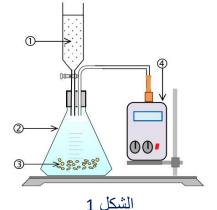
فرض الفصل الاول في مادة العلوم الفيزيائية

المستوى 3ع ت- ت ر - ر

أراد فوجان من التلاميذ متابعة التَحول الكيميائي البطيء والتَام بطريقتين بين معدن المغنيزيوم $Mg_{(s)}$ ومحلول حمض كلور الماء $\left(H_3O^+_{(aq)}+Cl^-_{(aq)}
ight)$ المنمذج بمعادلة التفاعل التالية:

$$Mg_{(s)} + 2H_3O^{+}_{(aq)} = Mg^{2+}_{(aq)} + H_{2(g)} + 2H_2O_{(l)}$$

الداخلة في التفاعل

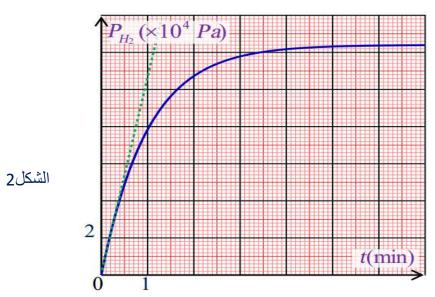

1. جِد الثنائيات

الفوج الأول:

عند درجة حرارة ثابتة $V=50\,mL$ وفي اللحظة t=0 وضَع التلاميذ في كأس بيشر حجمًا $V=50\,mL$ من محلول عند درجة حرارة ثابتة t=0 وصفيحة من معدن المغنيزيوم النقي كتلتها t=00، الدراسة التجريبية مكنت التلاميذ من المحصول على التركيز المولي المتبقي لشوارد الهيدرونيوم t=01 في المزيج خلال الزمن، والنتائج مدونة في الجدول التالي:

t(min)	0	1	2	3	5	7	9	11
$[H_3O^+] (\times 10^{-2} mol/L)$	60	46	38	32	25	22	20	20

- 1. كيف نكشف تجريبيًا على الغاز المنطلق؟
- 2. أً/ اعتمادًا على سُلم رسم مُناسب، ارسم البيان $[H_3O^+]=f(t)$ على ورق ميليمتري.
 - استنتج التركيز المولي الابتدائي $0^+ [H_3 O^+]_0$ لمحلول حمض كلور الماء.
 - ج/ صنف هذا التحول حسب مدته الزمنية المستغرقة
 - 3. أ/ أنشئ جدولا لتقدم التفاعل الحادث.
 - x_{max} المُعظمى x_{max} استنتج قيمة التقدم الأعظمى x_{max}
 - ج/ احسب الكتلة m_0 لصفيحة المغنيزيوم المستعملة.
 - t=0 عند اللحظة t=0 عند المحظة.


الفوج الثاني:

قام تلاميذ الفوج الثاني بتحقيق التركيب التجريبي الموضح في الشكل t=0 عند درجة حرارة ثابتة $25^{\circ}C$ وفي اللحظة t=0 قام التلاميذ بسكب حجم

الى الزجاجية $c=0.6\ mol/L$ من محلول حمض كلور الماء تركيزه المولى $V=50\ mL$

التي تحتوي كتلة قدرها m_0 من مسحوق معدن المغنيزيوم النقى، النتائج التجريبية 2

مُكنتهم من رسم بيان تغيرات ضغط غاز ثنائي الهيدروجين بدلالة الزمن $P_{H_2}=f(t)$ المُوضِح في الشكل $P_{H_2}=f(t)$

- أ. سُم العناصر المرقمة مع تبيان دور العنصر 4 في الشكل 1.
- $V'=250\ mL$ فعاز ثنائي الهيدروجين المُنطلق، علمًا أن حجم الزجاجية 2 هو V_{H_2} .
 - 3. اعتمادًا على جدول تقدم التفاعل.

 $x(t) = rac{V_{H_2}}{R(\theta + 273)} imes P_{H_2}(t)$: المخطة t تكتب بالشكل: x(t) عند المحطة x(t)

ب/ استنتج قيمة التقدم الأعظمي x_{max} ، ثم حُدد المتفاعل المُحد.

ج/ استنتج قيمة كتلة مسحوق الالمنيوم m_0 ، ثم قارنها مع قيمة الفوج الأول.

 $v(t) = rac{x_{max}}{P_f(H_2)} imes rac{dP_{H_2}(t)}{dt}$:بين أن عبارة سرعة التفاعل تكتب بالشكل عاد ثنائي الهيدروجين النهائي. حيث $P_f(H_2)$:هو ضغط غاز ثنائي الهيدروجين النهائي.

t=0 جد قيمتها عند اللحظة -

.5 عرف زمن نصف التفاعل $t_{1/2}$ ثم جد قيمته بيانيًا مع التعليل.

المقارنة بين السرعتين:

- قارن بين قيمتي سرعة التفاعل بين الفوجين، ماذا تستنتج؟

المعطيات:

 $M(Mg) = 24 \ g/mol$ $R = 8,31 \ (SI)$

تصحيح فرض الفصل الاول في مادة العلوم الفيزيائية

المستوى 3 ع ت- ت ر - ر

الفوج الاول:

- H_2 نكشف تجريبيًا عن غاز الهيدروجين H_2 المنطلق بواسطة عود ثقاب مشتعل فتحدث فرقعة.
 - $[H_30^+] = f(t)$ البيان. 2.

 ψ استنتاج التركيز المولي الابتدائي $[H_3O^+]_0$ لمحلول حمض كلور الماء:

t=0 من الجدول لدينا عند اللحظة

$$[H_3O^+]_0 = c = 60 \times 10^{-2} \, mol/L$$

3. أ/ جدول تقدم التفاعل:

التفاعل	معادلة	$Mg_{(s)} + 2H_3O^+_{(aq)} = Mg^{2+}_{(aq)} + H_{2(g)} +$			$-2H_2O_{(l)}$	
<u> </u>	التقدم	كميات المادة بالمول (mol)				
ابتدائية	x = 0	n_1	n_2	0	0	
انتقالية	x(t)	$n_1 - x(t)$	$n_2 - 2x(t)$	x(t)	x(t)	بوفرة
نهائية	x_{max}	$n_1 - x_{max}$	$n_2 - 2x_{max}$	x_{max}	x_{max}	

ب/ تحديد المتفاعل المحد:

 $[H_3O^+]_0 = 20 imes 10^{-2} \ mol/L
eq 0$ لدينا التفاعل تام ومن البيان نجد: لدينا التفاعل الم

ومنه شوارد $H_3O^+_{(aq)}$ موجودة بوفرة في نهاية التفاعل وعليه فان معدن المغنيزيوم $H_3O^+_{(aq)}$ هو المتفاعل المُحد.

استنتاج قيمة التقدم الأعظمي x_{max} :

$$n(H_3O^+) = n_2 - 2x_{max} \Rightarrow x_{max} = \frac{n_2 - n(H_3O^+)}{2}$$
 : لدينا من جدول التقدم عند الحالة النهائية: $x_{max} = \frac{c \cdot V - [H_3O^+]_f \cdot V}{2} = \frac{(c - [H_3O^+]_f) \cdot V}{2}$ $\Rightarrow x_{max} = \frac{(60 \times 10^{-2} - 20 \times 10^{-2}) \cdot 50 \times 10^{-3}}{2} = 10^{-2} \ mol$

ج/ حساب الكتلة m_0 لصفيحة المغنيزيوم المستعملة:

$$n_1-x_{max}=0\Rightarrow x_{max}=n_1=rac{m_0}{M}$$
 . لدينا $Mg_{(s)}$ هو المتفاعل المحد أي $m_0=x_{max}\cdot M=10^{-2} imes24=0$

t=0 عند اللحظة عند اللحظة 4.

$$v = \frac{dx}{dt}$$
 : لدينا

 $n(H_3O^+)=n_2-2x$ من جدول التقدم في الحالة الانتقالية لدينا:

$$\frac{dn(H_3O^+)}{dt} = 0 - 2\frac{dx}{dt}$$
 :نشتق الطرفين نجد

$$\frac{dn(H_3O^+)}{dt} = -2\frac{dx}{dt} = -2v$$

$$\Rightarrow v = -\frac{1}{2}\frac{dn(H_3O^+)}{dt} = -\frac{V}{2}\frac{d[H_3O^+]}{dt}$$

t=0 عساب قيمتها في اللحظة

$$v = -\frac{V}{2} \left(\frac{d[H_3O^+]}{dt} \right)_{t=0}$$
 الدينا:

$$t=0$$
 عند اللحظة يمثل معامل توجيه المماس عند اللحظة : $\left(\frac{d[H_3O^+]}{dt}\right)_{t=0}$ $v=-rac{50 imes10^{-2}}{2} imes\left(-rac{60 imes10^{-2}}{2,8}
ight)=5,4 imes10^{-3}\ mol/min$

الفوج الثاني:

1. تسمية العناصر المرقمة:

محلول حمض كلور الماء.	1
دورق زجاجي.	2
مسحوق معدن المغنيزيوم.	3
جهاز قياس الضغط دوره قياس الضغط لغاز الهيدروجين $H_2(g)$ المنطلق.	4

2. ايجاد الحجم الثابت V_{H_2} لغاز ثنائي الهيدروجين المنطلق:

$$V'=V+V_{H_2}\Rightarrow V_{H_2}=V'-V=250-50:$$
 لدينا $V_{H_2}=V_{H_2}=200~mL=2 imes10^{-4}~m^3$

$$x(t) = \frac{V_{H_2}}{R_1(\theta + 273)} \cdot P_{H_2}(t)$$
 : تبيان أن عبارة تقدم التفاعل $x(t)$ عند اللحظة $x(t)$

$$P_{H_2}(t) \cdot V_{H_2} = n_{H_2}(t) \cdot R \cdot T \quad \Rightarrow n_{H_2}(t) = \frac{P_{H_2}(t) \cdot V_{H_2}}{R \cdot T}$$

$$\Rightarrow n_{H_2}(t) = \frac{V_{H_2}}{R \cdot (\theta + 273)} \cdot P_{H_2}(t)$$

$$T = \theta + 273 \quad \Rightarrow T = 0$$

ولدينا من جدول التقدم في الحالة الانتقالية :

$$n_{H_2}(t) = x(t)$$

وعليه:

$$\Rightarrow n_{H_2}(t) = x(t) = \frac{V_{H_2}}{R \cdot (\theta + 273)} \cdot P_{H_2}(t)$$

 x_{max} استنتاج قيمة التقدم الأعظمى

$$x(t) = \frac{V_{H_2}}{R \cdot (\theta + 273)} \cdot P_{H_2}(t)$$
 :دينا

 $:t=t_f$ وعند

$$x_{max} = \frac{v_{H_2}}{R \cdot (\theta + 273)} \cdot P_f(H_2)$$

$$P_f(H_2) = 12,4 \times 10^4 \ Pa$$
 : غبد $P_{H_2} = f(t)$ من البيان

ومنه:

$$x_{max} = \frac{2 \times 10^{-4}}{8.31 \times (25 + 273)} \times 12,4 \times 10^{4} = 0,01 \ mol$$

تحديد المتفاعل المُحد:

نفرض أن شوارد
$$H_3O^+$$
 متفاعل مُحد:

$$n_2 - 2x_{max} = 0 \Rightarrow C \cdot V - 2x_{max} = 0$$

$$\begin{split} n_2 - 2x_{max} &= 0 \Rightarrow C \cdot V - 2x_{max} = 0 \\ \Rightarrow 0.6 \times 50 \times 10^{-3} - 2 \times 10^{-2} &= 10^{-2} \; mol \neq 0 \end{split}$$

وعليه: فان معدن المغنيزيوم $Mg_{(s)}$ هو المتفاعل المحد.

$$m_0$$
 استنتاج قيمة كتلة مسحوق الالمنيوم m_0

$$n_1 - x_{max} = 0 \Rightarrow x_{max} = n_1 = \frac{m_0}{M}$$

$$\Rightarrow m_0 = x_{max} \cdot M = 10^{-2} \times 24 = 0.24 g$$

$$v(t) = rac{x_{max}}{P_f(H_2)} \cdot rac{dP_{H_2}(t)}{dt}$$
 :بيان أن عبارة سرعة التفاعل تكتب بالشكل

$$v(t) = \frac{dx(t)}{dt}$$
 :لدينا

$$x_{max} = \frac{V_{H_2}}{R \cdot (\theta + 273)} \cdot P_f(H_2)$$
 ... (2) :ولدينا مما سبق

بقسمة (1) على (2) نجد:

$$\frac{x(t)}{x_{max}} = \frac{P_{H_2}(t)}{P_f(H_2)} \Rightarrow x(t) = \frac{x_{max} \cdot P_{H_2}(t)}{P_f(H_2)}$$

 $\{x(t) = \frac{V_{H_2}}{P_1(H_2, T_2)} \cdot P_{H_2}(t) \dots 1$

باشتقاق الطرفين بالنسبة للزمن نجد:

$$\Rightarrow \frac{dx(t)}{dt} = v(t) = \frac{x_{max}}{P_f(H_2)} \frac{dP_{H_2}(t)}{dt}$$

t = 0 حساب قيمتها في اللحظة

$$v(t=0) = \frac{x_{max}}{P_f(H_2)} \left(\frac{dP_{H_2}(t)}{dt}\right)_{t=0}$$
 .
 Let

t=0 عند اللحظة: $\left(rac{dP_{H_2}(t)}{dt}
ight)_{t=0}$

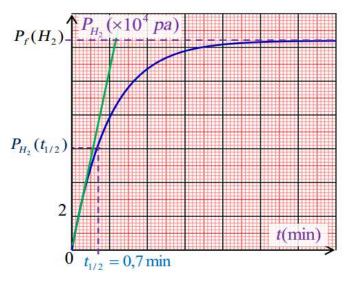
$$v(t=0) = \frac{10^{-2}}{12,4 \times 10^4} \frac{(12,4-0) \times 10^4}{1,2-0}$$

 $\Rightarrow v(t=0) = 8.3 \times 10^{-3} \, mol/min$

 $x(t_{1/2}) = \frac{x_{max}}{2}$: هو المدة التي يبلغ فيها تقدم التفاعل نصف قيمته العظمي $\frac{x(t_{1/2})}{2}$ هو المدة التي يبلغ فيها تقدم التفاعل نصف قيمته العليل:

$$\frac{x(t_{1/2})}{x_{max}} = \frac{1}{2} : عند \frac{x(t_{1/2})}{x_{max}} = \frac{P_{H_2}(t_{1/2})}{P_f(H_2)} : t = t_{1/2} \text{ عند } \frac{x(t)}{x_{max}} = \frac{P_{H_2}(t)}{P_f(H_2)}$$
 حيث :

$$\Rightarrow P_{H_2}(t_{1/2}) = 6.2 \times 10^4 \ Pa \qquad \Rightarrow P_{H_2}(t_{1/2}) = \frac{P_f(H_2)}{2} = \frac{12.4 \times 10^4}{2} \quad \Rightarrow \frac{P_{H_2}(t_{\frac{1}{2}})}{P_f(H_2)} = \frac{1}{2}$$


 $t_{rac{1}{2}} = 0.7 \ min$ بإسقاط هذه القيمة على محور الفواصل نجد:

المقارنة بين السرعتين:

الفوج الثاني	الفوج الأول			
8.3×10^{-3}	$5,4 \times 10^{-3}$	قيمة السرعة بـ (mol/min)		
مسحوق	صفيحة	$Mg_{(s)}$ معدن المغنيزيوم		

- نلاحظ أن قيمة سرعة التفاعل للفوج الثاني أكبر من قيمتها في الفوج الأول.
 - نستنتج أن زيادة مساحة سطح التلامس بين المتفاعلات

تزيد من سرعة التفاعل، أي مساحة سطح التلامس هو عامل حركي.

